Пост опубликован: 8 ноября, 2019
Контролер заряда – это электронное техническое устройство предназначенное для управления работой гелио установки в заданном режиме.
Данный процесс выражается в контролировании режима заряд-разряд аккумуляторной батареи, а также управлении работой солнечных батарей и подключения нагрузки в соответствии с оптимальными параметрами использования накопленной энергии.
Контроллер заряда солнечной батареи своими руками
Содержание статьи
В специализированных компаниях, а также торговых сетях занимающихся электронным оборудованием можно приобрести контроллеры заряда, выпускаемые различными компаниями производителями, как отечественными, так и зарубежными.
Подобное оборудование стоит достаточно дорого, поэтому для снижения стоимости гелио установки и сокращения сроков ее окупаемости, подобное устройство можно собрать своими руками.
В этом случае, конечно же, необходимо уметь пользоваться паяльником и иметь хотя бы начальные знания касающиеся электронных устройств и способах их монтажа.
О том, как сделать контроллер заряда для солнечной батареи своими руками мы расскажем в настоящей статье нашего проекта.
Схема контроллера заряда
Существует множество схем подобного оборудования, различающихся по степени сложности изготовления и техническим возможностям готового изделия после его сборки.
Конкретную схему каждый пользователь выбирает для себя сам, ориентируясь на свой опыт работы с электронными изделиями и умением их собирать самостоятельно.
На ниже следующем рисунке приведена схема контроллера, о сборке которого будет рассказано далее.
Комплектующие для самодельного контроллера управления работой солнечной батареи
Для сборки контроллера по выше приведенной схеме потребуются следующие комплектующие, а именно:
- Микросхемы — LM385-2.5 (2 шт.);
- Конденсаторы – емкостью 100 пф (2 штуки) и 1000 пф (1 штука);
- Диоды — SB540 (1 штука) или аналогичный с рабочим током равным максимальному току, вырабатываемому солнечной батареей, а также диод Шотки;
- Транзисторы — BUZ11, BC548, BC556;
- Резисторы — R1 – 1k5, R2 – 100k, R3 – 68k, R4 и R5 – 10k, R6 – 220k, R7 – 100k, R8 – 92k, R9 – 10k, R10 – 92k.
- Светодиодный индикатор – 1 штука.
Важно! Данная схема рассчитана на работу с одной солнечной батареей, способной вырабатывать максимальный ток 4,0 Ампера и аккумулятором, емкость которого составляет 3000 А/час.
При необходимости комплектующие можно заменить, а также усовершенствовать данную схему, если появиться такая необходимость.
Вот некоторые советы по замене комплектующих:
- Если заменить микросхемы, то следует менять и конденсатор С2 (его емкость должна соответствовать новым характеристикам микросхем).
- При невозможности приобрести резисторы сопротивлением 92К (R8 и R10 на схеме), их следует заменить на два подключаемых последовательно, сопротивлениями 82 и 10 К.
К сведению! При использовании солнечных панелей, максимальный ток которых более 4,0 А, необходимо использовать более мощные транзисторы и диоды, чем указанных в рассматриваемой схеме.
Принцип работы собираемой схемы
В темное время суток, когда солнечная батарея не вырабатывает электрический ток, контроллер находиться в режиме ожидания (спящий режим).
При попадании солнечных лучей на фотоэлектрические элементы гелио установки, начинается вырабатываться электрический ток, и при достижении напряжения, равного 10,0 В контроллер включается в работу (электрический ток подается на клеммы аккумулятора).
Когда напряжение станет равным 14,0 В, включается в работу усилитель U1 и зарядка прекращается (в это время разряжается конденсатор С2).
После разрядки конденсатора напряжение падает и закрывается мощный транзистор (VT3 на схеме) и зарядка АКБ возобновляется.
Сборка контроллера заряда аккумулятора
Для того, чтобы было удобно использовать собираемую конструкцию, необходимо подобрать корпус, в котором будет размещена плата с установленными на нее электронными составляющими и изготовить саму эту плату.
В магазинах группы «Сделай САМ» можно приобрести специальные заготовки для изготовления печатных плат, представляющие собой диэлектрик (стеклотекстолит) в виде пластины, на который нанесен слой меди или иного токопроводящего материала.
Изготовление печатной платы осуществляется в следующей последовательности:
- На бумаге рисуется шаблон, соответствующий схеме, предполагаемой к размещению на печатной плате. На шаблоне прорисовываются дорожки между элементами схемы, а также места установки этих элементов.
- Подбирается заготовка печатной платы нужного размера (если необходимо, то излишки обрезаются при помощи ножовки по металлу).
- Шаблон приклеивается при помощи клея «Момент» на подготовленную заготовку.
- В местах крепления элементов схемы просверливаются отверстия (сверло диаметром 0,7 – 0,8 мм).
- Шаблон удаляется, а на заготовке платы, между просверленными отверстиями, прорисовываются дорожки связи (для этого используется краска стойкая к водным растворам).
- Когда дорожки и места пайки электронных составляющих прорисованы, можно приступать к травлению платы.
Важно! Перед нанесением краски на поверхность печатной платы ее следует обезжирить при помощи бензина, ацетона или простого моющего средства.
К сведению! Травление, в домашних условиях, можно выполнить с помощью перекиси водорода или раствором хлорного железа.
Травление осуществляется следующим образом, а именно:
- В специальную емкость, стойкую к воздействиям химических веществ (стекло, эмалированная посуда и т.д.) наливается подготовленный раствор;
- Затем в раствор погружается печатная плата с нанесенным на него рисунком.
- Когда токопроводящий слой, в местах, где отсутствует краска, раствориться, плата достается из раствора, после чего обливается проточной водой;
- После этого заготовка вытирается насухо и с ее поверхности удаляется краска, обозначающая электрические дорожки (используется наждачная бумага).
Когда краска будет удалена, печатная плата готова к размещению электронных элементов схемы.
В соответствии с выбранной схемой и шаблоном размещения комплектующих, выполняется впаивание элементов конструкции, в местах где просверлены монтажные отверстия.
Готовая плата помещается в подготовленный корпус, на котором монтируются места вывода контактов к источнику электрического тока (солнечная батарея) и накопительному элементу гелио системы (аккумуляторная батарея).
Проверятся работоспособность собранной схемы, и выполняется установка собранного контроллера в выбранном месте размещения.
Отличительные особенности МРРТ и ШИМ контроллеров и как это отражается при изготовлении их своими руками
Отличительной особенностью МРРТ моделей, является высокий КПД. Работа подобных приборов основана на поиске максимальной точки мощности, определяемой на соотношении силы тока и напряжения на источнике электрической энергии (солнечная батарея).
ШИМ устройства – это более дешевые приборы, работающие по принципу широтно-импульсной модуляции.
При изготовлении подобных устройств своими руками наиболее просто изготовить ШИМ-прибор, но для использования в автоматическом режиме все-таки лучше МРРТ аналоги, об одном из которых было рассказано выше.
Достоинствами подобных устройств являются:
- Универсальность использования (гелио и комбинированные системы, ветровые генераторы).
- Возможность создания оптимальных условий для заряда АКБ, даже при низкой освещенности, что увеличивает срок их эксплуатации;
- Высокий КПД использования.
Недостатки тоже есть, их можно сформулировать следующим образом:
- Высокая стоимость у готовых изделий;
- Сложность при изготовлении своими руками, обусловленная технологией обеспечивающей работу устройства.
В заключение хочется отметить, что даже сложные приборы можно изготовить самостоятельно в домашних условиях, используя электронные комплектующие заводского производства, а главными условиями успеха в этом деле, будет желание и умение работать своими руками.
Спасибо, что дочитали до конца! Не забывайте подписываться на канал, Если статья Вам понравилась!
Делитесь с друзьями, оставляйте ваши комментарии
Добавляйтесь в нашу группу в ВК:
ALTER220 Портал о альтернативную энергию
и предлагайте темы для обсуждений, вместе будет интереснее!!!